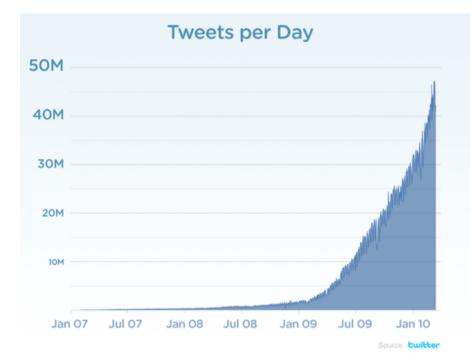
Statistical Exploration of Geographical Lexical Variation in Social Media

Jacob Eisenstein

Brendan O'Connor Noah A. Smith Eric P. Xing

Social media

- Social media links online text with social networks.
- Increasingly ubiquitous form of social interaction



• Social media text is often conversational and informal.

THE_REAL_SHAQ THE_REAL_SHAQ @loveJBieber_90 I mite jump on stage and do baby baby baby again u r the best shawty main 28 Oct

Is there geographical variation in social media?

Searching for dialect in social media

- One approach: search for known variable alternations, e.g. you / yinz / yall (Kurath 1949, ..., Boberg 2005)
- Known variables like "yinz" don't appear much
- Are there new variables we don't know about?

Variables and dialect regions

- Given the dialect regions, we could use hypothesis testing to find variables.
- Given the variables, we could use clustering to find the regions.

RuG

The averaged Levensthein distances between the dialects. Darker lines connect closer points, lighter lines more remote ones. Pearson's r with geographic distances is 0.69.

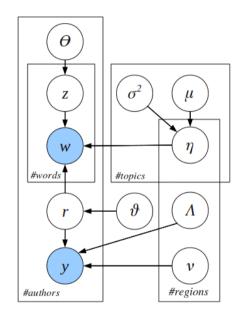
Distances

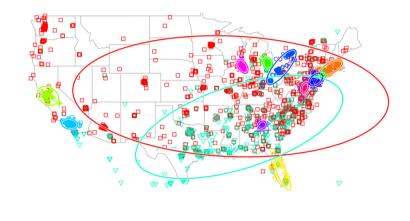
• Can we infer both the regions and the variables from raw data?

Nerbonne, 2005

18

Outline





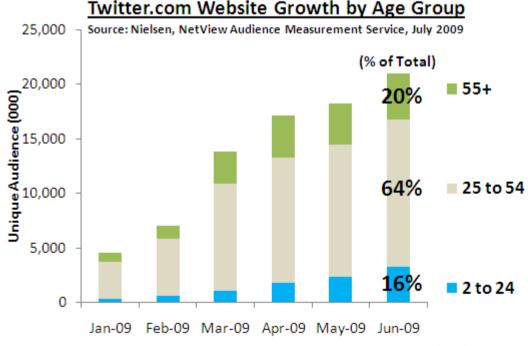
data

model

Data

Combines *microblogs* and social network.

- Messages limited to 140 characters.
- 65 million "tweets" per day, mostly public
- 190 million users
 - Diverse age, gender, and racial diversity



A partial taxonomy of Twitter messages

Official announcements

Business advertising

Links to blog and web content

Celebrity self-promotion

BritishMonarchy TheBritishMonarchy On 6 Jan: Changing the Guard at Buckingham Palace - Starts at approx 11am http://www.royal.gov.uk/G

17 hours ago

bigdogcoffee bigdogcoffee Back to normal hours beginning tomorrow......Monday-Friday 6am-10pm Sat/Sun 7:30am-10pm

2 Jan

crampell Catherine Rampell Casey B. Mulligan: Assessing the Housing Sector http://nyti.ms/hcUKK9

10 hours ago

THE_REAL_SHAQ THE_REAL_SHAQ fill in da blank, my new years shaqalution is

Status messages

emax electronic max

1.1.11 - britons and americans can agree on the date for once. happy binary day!

1 Jan

4 Jan

_siddx3 Evelyn Santana RT @_LusciousVee: #EveryoneShouldKnow Ima Finally Be 18 This Year ^.^

3 minutes ago

xoxoJuicyCee CeeCee'
@fxknnCelly aha kayy goodnightt (:

4 Jan

Group conversation

Personal conversation

Geotagged text

- Popular cellphone clients for Twitter encode GPS location.
- We screen our dataset to include only geotagged messages sent from iPhone or Blackberry clients.

Our corpus

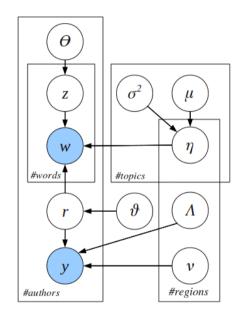
- We receive a stream that included 15% of all public messages.
- During the first week of March 2010, we include all authors who:
 - \geq 20 geotagged messages in our stream
 - From the continental USA
 - Social connections with fewer than 1000 users
- Quick and dirty!
 - Author location = GPS of first post

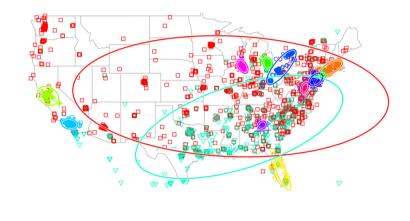
Corpus statistics

- 9500 authors
- 380,000 messages
- 4.7 million tokens
- Highly informal and conversational
 - 25% of the 5000 most common terms are not in the dictionary.
 - More than half of all messages mention another user.

Online at: http://www.ark.cs.cmu.edu/GeoText

Outline





data

model

Generative models

- How to simultaneously discover dialect regions and the words that characterize them?
- Probabilistic generative models
 - a.k.a. graphical models
 - Examples:
 - Hidden markov model
 - Naïve Bayes
 - Topic Models a.k.a. Latent Dirichlet Allocation (Blei et al., 2003)

Generative models in 30 seconds

• We hypothesize that text is the output of a stochastic process. For example:

Pick some things to talk about Gym, tanning, laundry For each word, pick one thing to talk gym about pick a word associated with that thing "Triceps!"

Generative models in 30 seconds

- We only see the output of the generative process.
- Through statistical inference over large amounts of data, we make educated guesses about the hidden variables.



A generative model of lexical geographic variation

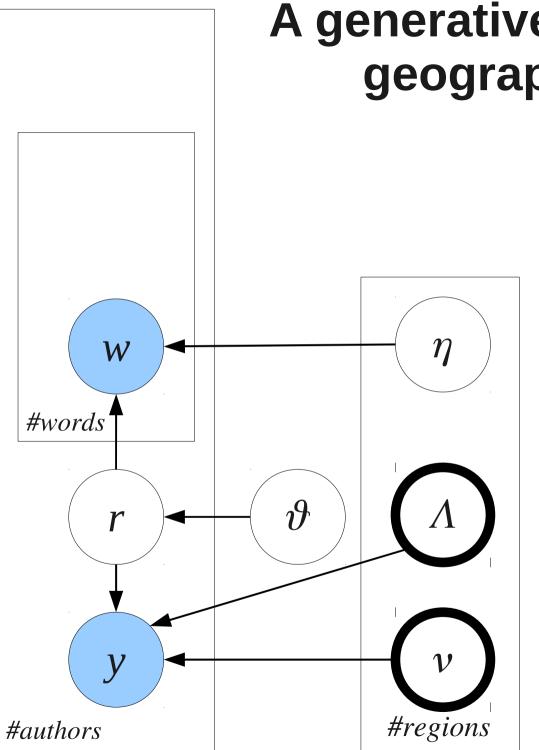
For each author

Pick a region from $P(r \mid \vartheta)$

Pick a location from $P(y \mid \Lambda_r, v_r)$

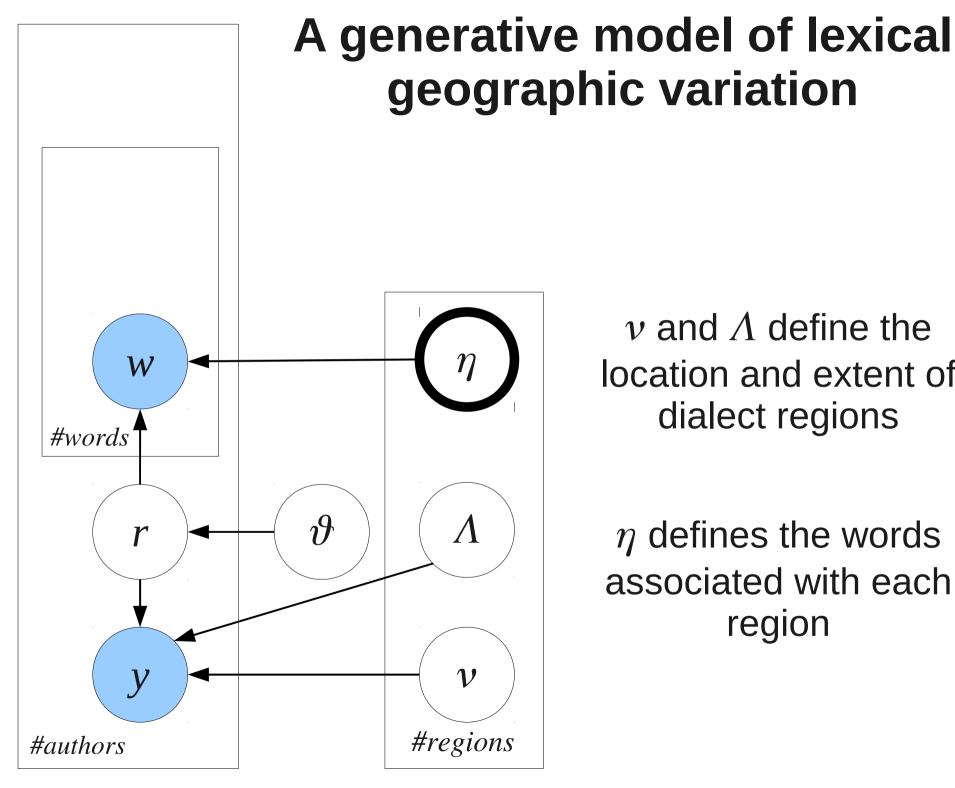
For each token

Pick a word from $P(w \mid \eta_r)$



A generative model of lexical geographic variation

v and Λ define the location and extent of dialect regions

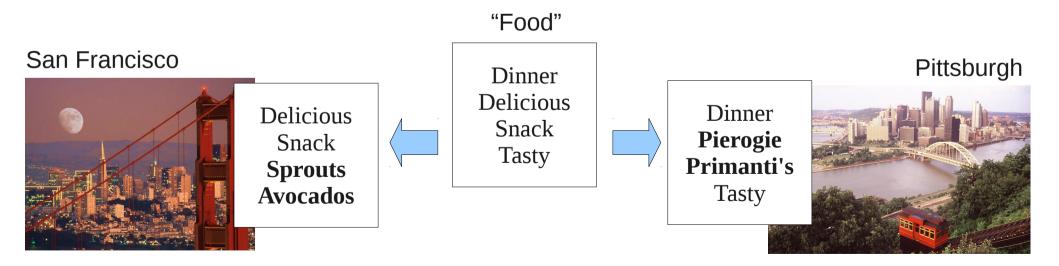


v and Λ define the location and extent of dialect regions

 η defines the words associated with each region

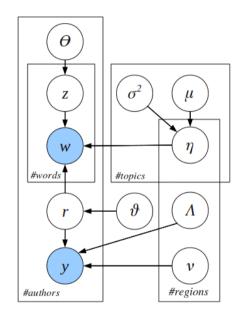
Topic models for lexical variation

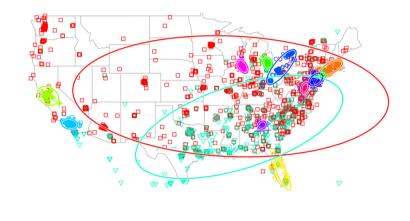
- Discourse topic is a confound for lexical variation.
- Solution: model topical and regional variation jointly
 - Each author's text is shaped by both dialect region and topic
 - Each dialect region contains a unique version of each topic



See our EMNLP 2010 paper for more details

Outline





data

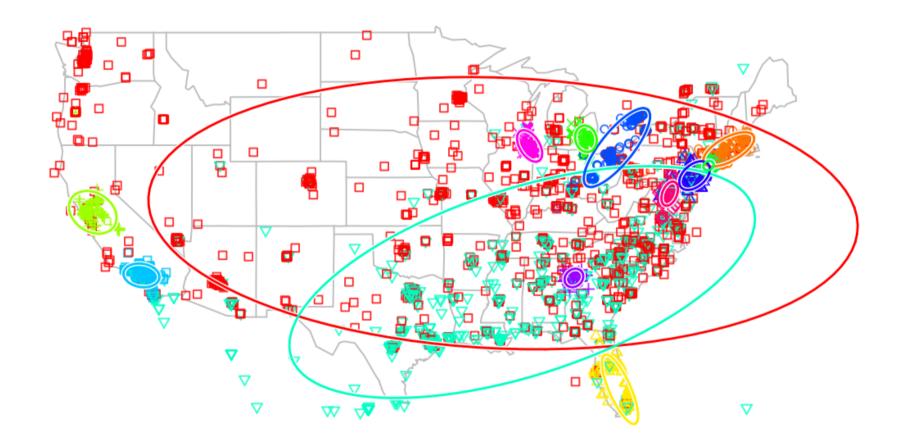
model

Does it work?

Task: predict author location from raw text

METHOD	MEAN ERROR (KM)	MEDIAN ERROR (KM)	
Mean location	1148	1018	
Text regression	948	712	
Generative, no topics	947	644	
Generative, topics	900	494	

Induced dialect regions



- Each point is an individual in our dataset
- Symbols and colors indicate latent region membership

Observations

- Many sources of geographical variation
 - Geographically-specific proper names boston, knicks (NY), bieber (Lake Eerie)
 - Topics of local prominence: tacos (LA), cab (NY)
 - Foreign-language words pues (San Francisco), papi (LA)
 - Geographically distinctive "slang" terms hella (San Francisco; Bucholtz et al., 2007) fasho (LA), suttin (NY) coo (LA) / koo (San Francisco)

Discovering alternations

soda / pop / coke

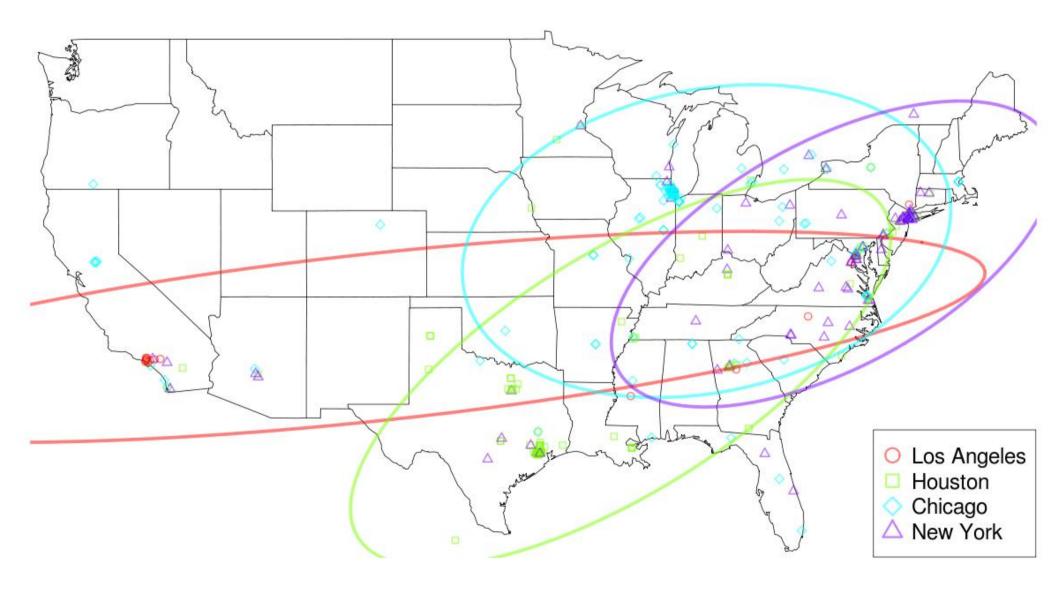
- Criteria:
 - Geographically distinct

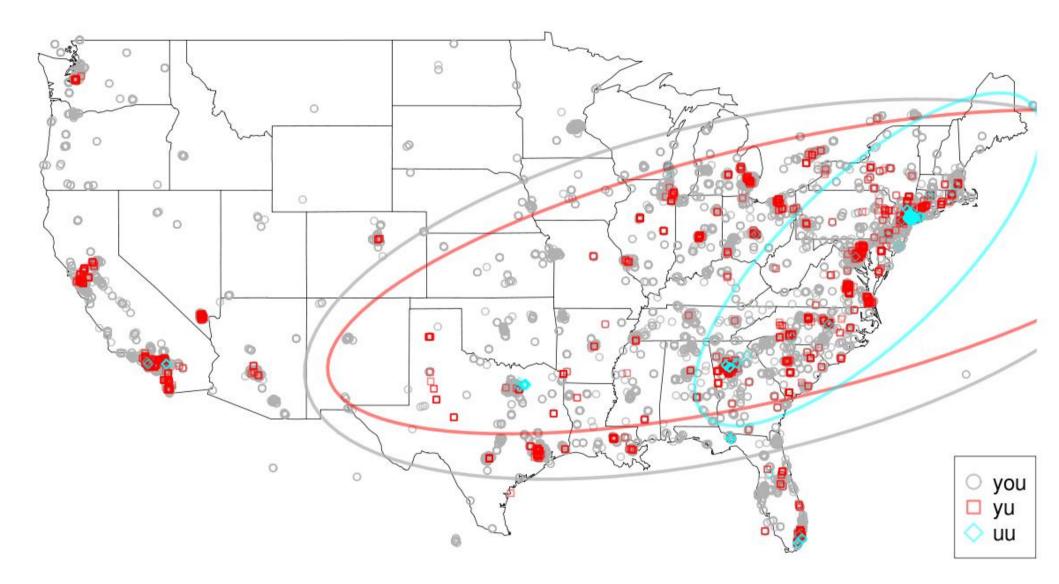
Maximize divergence of *P(Region | Word)*

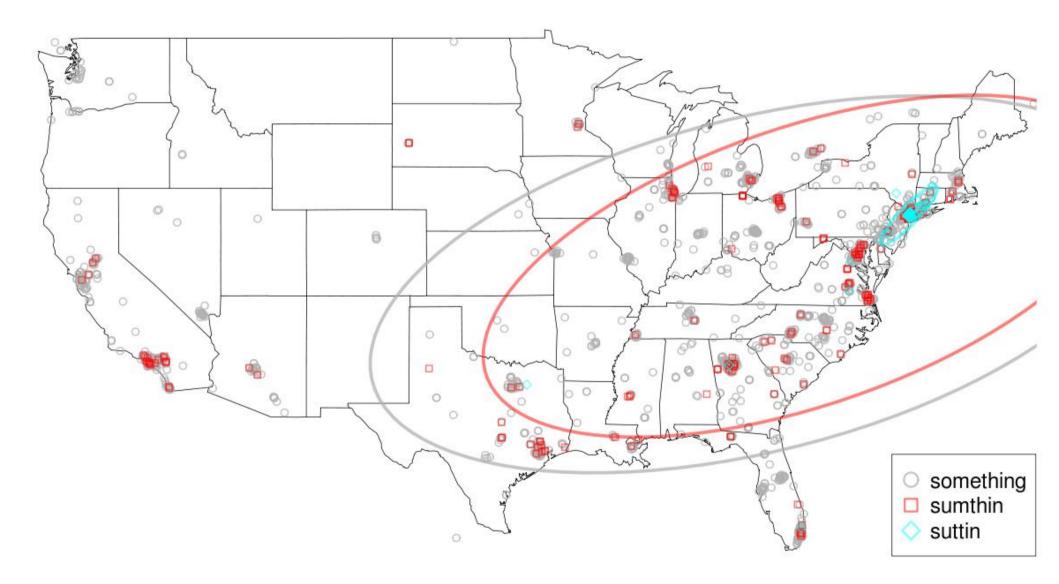
• Syntactically and (hopefully) semantically equivalent

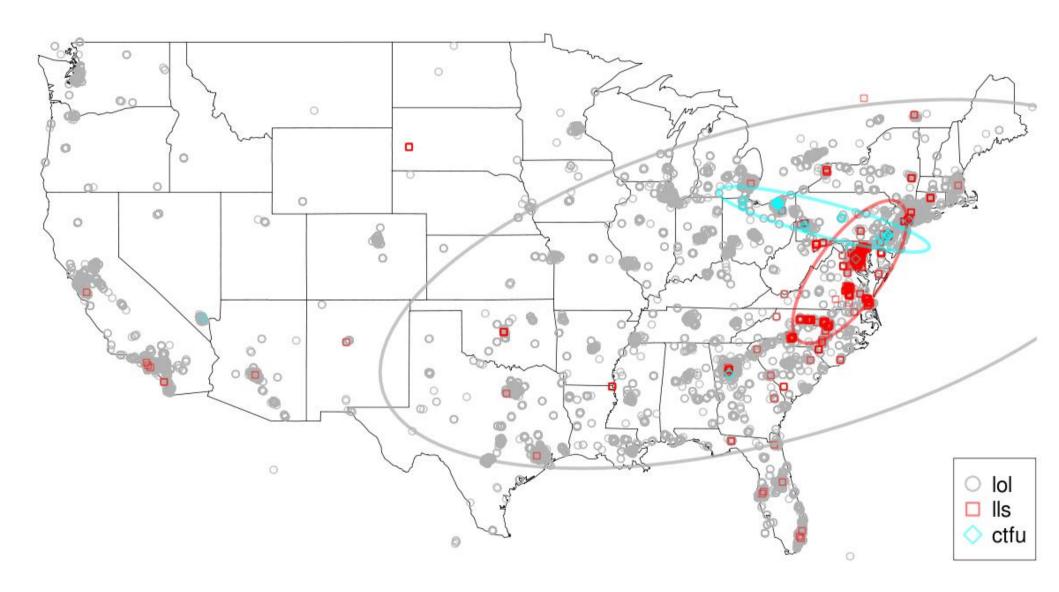
Minimize divergence of *P(Neighbors | Word)*

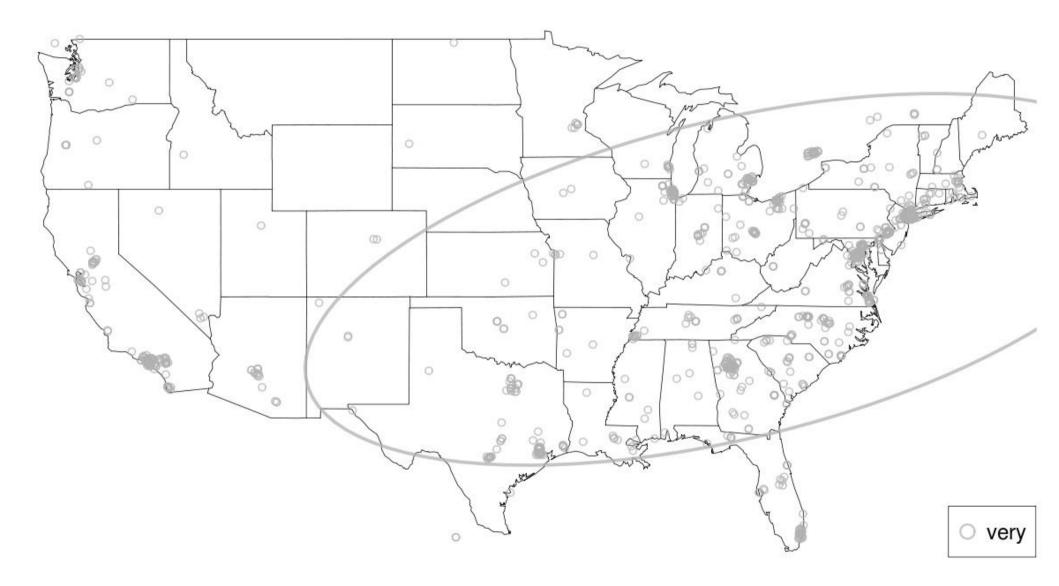
Examples

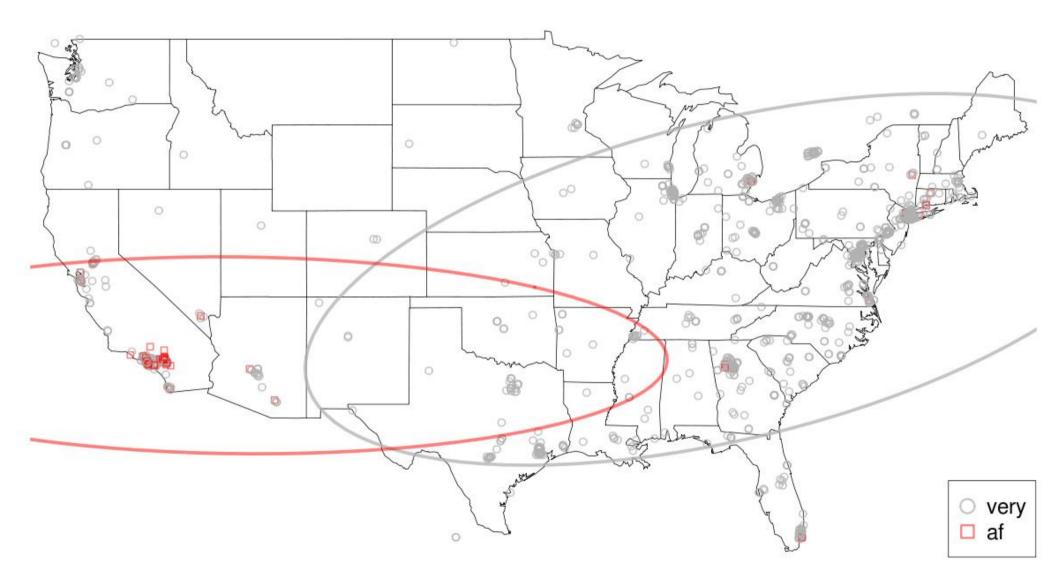


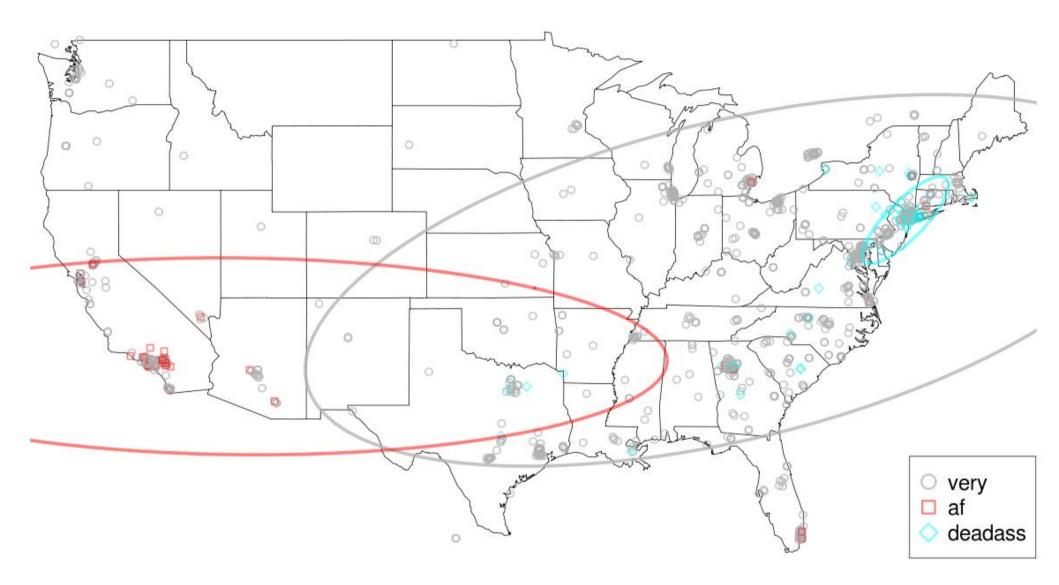


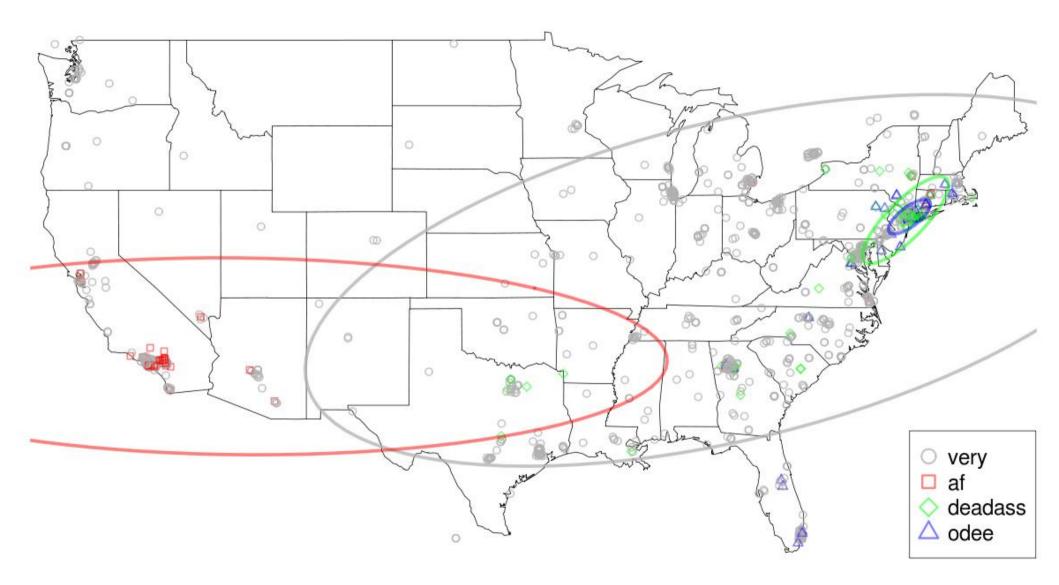


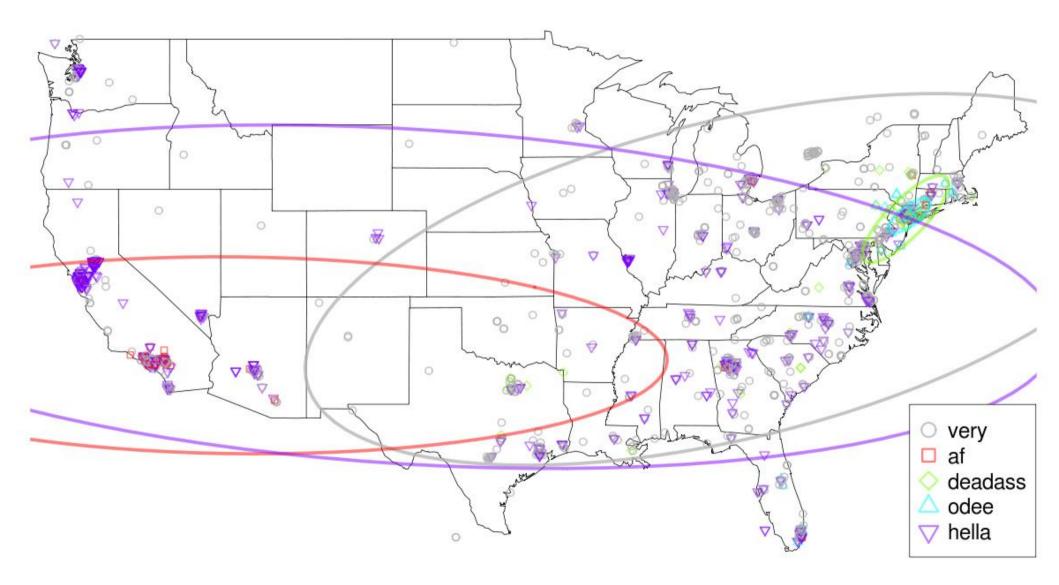












Summary (1)

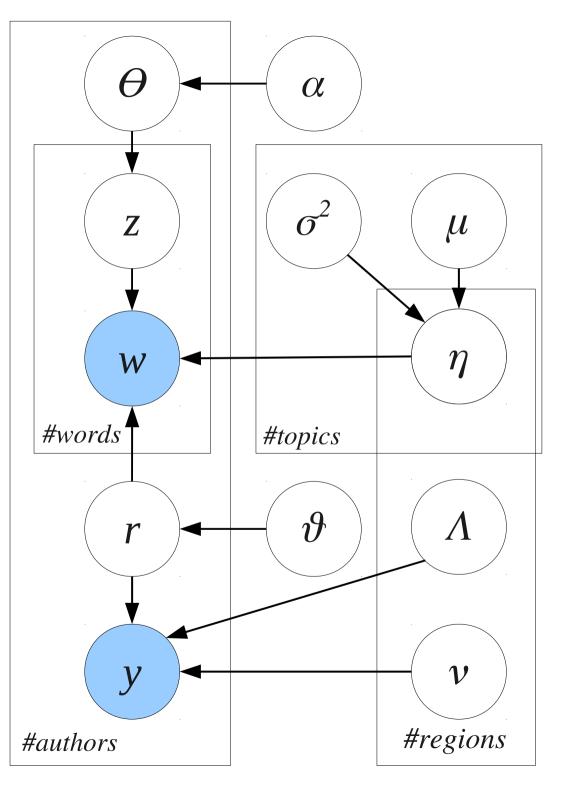
- We can mine raw text to learn about lexical variation:
 - Discover geographic language communities and geographically-coherent sets of terms
 - Disentangle geographical and topical variation
 - Predict author location from text alone

http://www.ark.cs.cmu.edu/GeoText

Summary (2)

- Social media text contains a variety of lexical dialect markers
 - Some are known to relate to speech: e.g., hella
 - Others appear to be unique to computer-mediated communication: coo/koo, Imao/ctfu, you/u/uu, ...
 - Future work: systematic analysis of the relationship between dialect in spoken language and social media text

Thx!! R uu gna ask me suttin?



Adding topics

For each author

Pick a region from $P(r \mid \vartheta)$

Pick a location from $P(y \mid \Lambda_r, v_r)$

Pick a distribution over topics from $P(\theta \mid \alpha)$

For each token

Pick a topic from $P(z \mid \Theta)$ Pick a word from $P(w \mid \eta_{r,z})$

Results

METHOD	MEAN ERROR (KM)	MEDIAN ERROR (KM)	
Mean location	1148	1018	
K-nearest neighbors	1077	853	
Text regression	948	712	
Supervised LDA	1055	728	
Mixture of unigrams	947	644	
Geographic Topic Model	900	494	

Wilcoxon-Mann-Whitney: p < .01

Analysis

	"basketball"	"popular music"	"daily life"	"emoticons"	"chit chat"
	PISTONS KOBE LAKERS game DUKE NBA CAVS STUCKEY JETS KNICKS	album music beats artist video #LAKERS ITUNES tour produced vol	tonight shop weekend getting going chilling ready discount waiting iam	:) haha :d :(;) :p xd :/ hahaha hahah	lol smh jk yea wyd coo ima wassup somethin jp
Boston	CELTICS victory BOSTON CHARLOTTE	playing daughter PEARL alive war comp	BOSTON	;p gna loveee	ese exam suttin sippin
N. California	THUNDER KINGS GIANTS pimp trees clap	SIMON dl mountain seee	6am OAKLAND	<i>pues</i> hella koo SAN fckn	hella flirt hut iono OAKLAND
New York	NETS KNICKS	BRONX	iam cab	oww	wasssup nm
Los Angeles	#KOBE #LAKERS AUSTIN	#LAKERS load HOLLYWOOD imm MICKEY TUPAC	omw tacos hr HOLLYWOOD	af <i>papi</i> raining th bomb coo HOLLYWOOD	wyd coo af <i>nada</i> tacos messin fasho bomb
Lake Erie	CAVS CLEVELAND OHIO BUCKS od COLUMBUS	premiere prod joint TORONTO onto designer CANADA village burr	stink CHIPOTLE tipsy	;d blvd BIEBER hve OHIO	foul WIZ salty excuses lames officer lastnight