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Social media

● Social media links 
online text with social 
networks.

● Increasingly 
ubiquitous form of 
social interaction



  

● Social media text is often conversational and 
informal.

Is there geographical variation in 
social media?



  

Searching for dialect in social media

● One approach: search for known variable 
alternations, e.g. you / yinz / yall 
(Kurath 1949, …, Boberg 2005)

● Known variables like “yinz” don't appear much
● Are there new variables we don't know about?



  

Variables and dialect regions

Nerbonne, 2005

● Given the dialect 
regions, we could use 
hypothesis testing to 
find variables.

● Given the variables, we 
could use clustering to 
find the regions.

● Can we infer both the regions and 
the variables from raw data?
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Data

● Messages limited to 140 
characters.

● 65 million “tweets” per day, 
mostly public

● 190 million users

● Diverse age, gender, and 
racial diversity

Combines microblogs 
and social network.



  

A partial taxonomy of Twitter messages

Celebrity self-promotion

Links to blog and web 
content

Official announcements

Business advertising

Status messages

Group conversation

Personal conversation



  

Geotagged text

● Popular cellphone 
clients for Twitter 
encode GPS location.

● We screen our 
dataset to include only 
geotagged messages 
sent from iPhone or 
Blackberry clients.



  

Our corpus

● We receive a stream that included 15% of all 
public messages.

● During the first week of March 2010, we include 
all authors who:
● ≥ 20 geotagged messages in our stream
● From the continental USA
● Social connections with fewer than 1000 users

● Quick and dirty!
● Author location = GPS of first post



  

Corpus statistics

● 9500 authors
● 380,000 messages
● 4.7 million tokens
● Highly informal and conversational

● 25% of the 5000 most common terms are not in the dictionary.
● More than half of all messages mention another user.

Online at: http://www.ark.cs.cmu.edu/GeoText
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Generative models

● How to simultaneously discover dialect regions 
and the words that characterize them?

● Probabilistic generative models
● a.k.a. graphical models
● Examples:

– Hidden markov model
– Naïve Bayes
– Topic Models a.k.a. Latent Dirichlet Allocation

(Blei et al., 2003)



  

Generative models in 30 seconds

● We hypothesize that text is the output of a 
stochastic process. For example:

Pick some things to talk about

For each word,

pick one thing to talk 
about

pick a word associated 
with that thing “Triceps!”

Gym, tanning,
laundry

gym



  

Generative models in 30 seconds

● We only see the output 
of the generative 
process.

● Through statistical 
inference over large 
amounts of data, we 
make educated guesses 
about the hidden 
variables.

“Triceps!”

Gym, tanning,
laundry

gym



  

A generative model of lexical 
geographic variation

w

#authors

#words

y

r

η

#regions

Λ

ν

ϑ

For each author
Pick a region from P(r | ϑ) 

Pick a location from P(y | Λr , νr ) 

For each token

Pick a word from P(w | ηr ) 



  

A generative model of lexical 
geographic variation
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ν and Λ define the 
location and extent of 

dialect regions



  

A generative model of lexical 
geographic variation

w

#authors

#words

y

r

η

#regions

Λ

ν

ϑ

ν and Λ define the 
location and extent of 

dialect regions

η defines the words 
associated with each 

region



  

Topic models for lexical variation

● Discourse topic is a confound for lexical variation.

● Solution: model topical and regional variation jointly

● Each author's text is shaped by both dialect region and topic
● Each dialect region contains a unique version of each topic

Dinner
Delicious

Snack
Tasty

Dinner
Pierogie

Primanti's
Tasty

PittsburghSan Francisco

Delicious
Snack

Sprouts
Avocados

“Food”

See our EMNLP 2010 paper for more details
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Does it work?

METHOD MEAN 
ERROR (KM)

MEDIAN 
ERROR (KM)

Mean location 1148 1018
Text regression 948 712
Generative, no topics 947 644
Generative, topics 900 494

Task: predict author location from raw text



  

Induced dialect regions

● Each point is an individual in our dataset

● Symbols and colors indicate latent region membership



  

Observations

● Many sources of geographical variation
● Geographically-specific proper names 

boston, knicks (NY), bieber (Lake Eerie)

● Topics of local prominence: 

tacos (LA), cab (NY)
● Foreign-language words

pues (San Francisco), papi (LA)
● Geographically distinctive “slang” terms

hella (San Francisco; Bucholtz et al., 2007)

fasho (LA), suttin (NY)

coo (LA) / koo (San Francisco)



  

Discovering alternations

● Criteria:
● Geographically 

distinct 

 
● Syntactically and 

(hopefully) semantically 
equivalent

soda / pop / coke

Maximize divergence of 

P(Region | Word) 

Minimize divergence of

P(Neighbors | Word)



  

Examples



  



  



  



  



  



  



  



  



  



  

Summary (1)

● We can mine raw text to learn about lexical 
variation:
● Discover geographic language communities and 

geographically-coherent sets of terms
● Disentangle geographical and topical variation
● Predict author location from text alone

http://www.ark.cs.cmu.edu/GeoText



  

Summary (2)

● Social media text contains a variety of lexical dialect 
markers
● Some are known to relate to speech: e.g., hella
● Others appear to be unique to computer-mediated 

communication: coo/koo, lmao/ctfu, you/u/uu, …
● Future work: systematic analysis of the relationship 

between dialect in spoken language and social 
media text

Thx!! R uu gna ask me suttin?



  

Adding topics

w

#authors

#words

y

r

η

#regions

Λ

ν

ϑ

For each author
Pick a region from P(r | ϑ) 

Pick a location from P(y | Λr , νr ) 

For each token

Pick a word from P(w | ηr , z  ) 

z

ϴ

#topics

η

μσ2

Pick a distribution over topics
from P(ϴ | α) 

α

Pick a topic from P(z | ϴ ) 



  

Results

METHOD MEAN 
ERROR (KM)

MEDIAN 
ERROR (KM)

Mean location 1148 1018
K-nearest neighbors 1077 853
Text regression 948 712
Supervised LDA 1055 728
Mixture of unigrams 947 644
Geographic Topic Model 900 494

Wilcoxon-Mann-Whitney: p < .01



  

Analysis


