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Abstract. Language change is a complex social phenomenon, revealing
pathways of communication and sociocultural influence. But, while lan-
guage change has long been a topic of study in sociolinguistics, traditional
linguistic research methods rely on circumstantial evidence, estimating
the direction of change from differences between older and younger speak-
ers. In this paper, we use a data set of several million Twitter users to
track language changes in progress. First, we show that language change
can be viewed as a form of social influence: we observe complex contagion
for phonetic spellings and “netspeak” abbreviations (e.g., lol), but not
for older dialect markers from spoken language. Next, we test whether
specific types of social network connections are more influential than oth-
ers, using a parametric Hawkes process model. We find that tie strength
plays an important role: densely embedded social ties are significantly
better conduits of linguistic influence. Geographic locality appears to
play a more limited role: we find relatively little evidence to support the
hypothesis that individuals are more influenced by geographically local
social ties, even in their usage of geographical dialect markers.

1 Introduction

Change is a universal property of language. For example, English has changed
so much that Renaissance-era texts like The Canterbury Tales must now be read
in translation. Even contemporary American English continues to change and
diversify at a rapid pace—to such an extent that some geographical dialect differ-
ences pose serious challenges for comprehensibility [36]. Understanding language
change is therefore crucial to understanding language itself, and has implications
for the design of more robust natural language processing systems [17].

Language change is a fundamentally social phenomenon [34]. For a new lin-
guistic form to succeed, at least two things must happen: first, speakers (and
writers) must come into contact with the new form; second, they must decide to
use it. The first condition implies that language change is related to the struc-
ture of social networks. If a significant number of speakers are isolated from a
potential change, then they are unlikely to adopt it [40]. But mere exposure is
not sufficient—we are all exposed to language varieties that are different from



our own, yet we nonetheless do not adopt them in our own speech and writing.
For example, in the United States, many African American speakers maintain a
distinct dialect, despite being immersed in a linguistic environment that differs in
many important respects [23,45]. Researchers have made a similar argument for
socioeconomic language differences in Britain [49]. In at least some cases, these
differences reflect questions of identity: because language is a key constituent in
the social construction of group identity, individuals must make strategic choices
when deciding whether to adopt new linguistic forms [11,29,33]. By analyzing
patterns of language change, we can learn more about the latent structure of
social organization: to whom people talk, and how they see themselves.

But, while the basic outline of the interaction between language change and
social structure is understood, the fine details are still missing: What types of
social network connections are most important for language change? To what
extent do considerations of identity affect linguistic differences, particularly in
an online context? Traditional sociolinguistic approaches lack the data and the
methods for asking such detailed questions about language variation and change.

In this paper, we show that large-scale social media data can shed new light
on how language changes propagate through social networks. We use a data set
of Twitter users that contains all public messages for several million accounts,
augmented with social network and geolocation metadata. This data set makes
it possible to track, and potentially explain, every usage of a linguistic variable4

as it spreads through social media. Overall, we make the following contributions:

– We show that non-standard words are most likely to propagate between
individuals who are connected in the Twitter mutual-reply network. This
validates the basic approach of using Twitter to measure language change.

– For some classes of non-standard words, we observe complex contagion—i.e.,
multiple exposures increase the likelihood of adoption. This is particularly
true for phonetic spellings and “netspeak” abbreviations. In contrast, non-
standard words that originate in speech do not display complex contagion.

– We use a parametric Hawkes process model [26,39] to test whether specific
types of social network connections are more influential than others. For
some words, we find that densely embedded social ties are significantly better
conduits of linguistic influence. This finding suggests that individuals make
social evaluations of their exposures to new linguistic forms, and then use
these social evaluations to strategically govern their own language use.

– We present an efficient parameter estimation method that uses sparsity pat-
terns in the data to scale to social networks with millions of users.

2 Data

Twitter is an online social networking platform. Users post 140-character mes-
sages, which appear in their followers’ timelines. Because follower ties can be

4 The basic unit of linguistic differentiation is referred to as a “variable” in the soci-
olinguistic and dialectological literature [50]. We maintain this terminology here.



asymmetric, Twitter serves multiple purposes: celebrities share messages with
millions of followers, while lower-degree users treat Twitter as a more intimate
social network for mutual communication [31]. In this paper, we use a large-scale
Twitter data set, acquired via an agreement between Microsoft and Twitter. This
data set contains all public messages posted between June 2013 and June 2014
by several million users, augmented with social network and geolocation meta-
data. We excluded retweets, which are explicitly marked with metadata, and
focused on messages that were posted in English from within the United States.

2.1 Linguistic Markers

The explosive rise in popularity of social media has led to an increase in linguistic
diversity and creativity [5,6,9,14,17,27], affecting written language at all levels,
from spelling [18] all the way up to grammatical structure [48] and semantic
meaning across the lexicon [25,30]. Here, we focus on the most easily observable
and measurable level: variation and change in the use of individual words.

We take as our starting point words that are especially characteristic of eight
cities in the United States. We chose these cities to represent a wide range
of geographical regions, population densities, and demographics. We identified
the following words as geographically distinctive markers of their associated
cities, using SAGE [20]. Specifically, we followed the approach previously used
by Eisenstein to identify community-specific terms in textual corpora [19].5

Atlanta: ain (phonetic spelling of ain’t), dese (phonetic spelling of these), yeen
(phonetic spelling of you ain’t);

Baltimore: ard (phonetic spelling of alright), inna (phonetic spelling of in a
and in the), lls (laughing like shit), phony (fake);

Charlotte: cookout ;

Chicago: asl (phonetic spelling of as hell, typically used as an intensifier on
Twitter6), mfs (motherfuckers);

Los Angeles: graffiti, tfti (thanks for the information);

Philadelphia: ard (phonetic spelling of alright), ctfuu (expressive lengthening
of ctfu, an abbreviation of cracking the fuck up), jawn (generic noun);

San Francisco: hella (an intensifier);

Washington D.C.: inna (phonetic spelling of in a and in the), lls (laughing
like shit), stamp (an exclamation indicating emphasis).7

Linguistically, we can divide these words into three main classes:

5 After running SAGE to identify words with coefficients above 2.0, we manually
removed hashtags, named entities, non-English words, and descriptions of events.

6 Other sources, such as http://urbandictionary.com, report asl to be an abbrevi-
ation of age, sex, location? However, this definition is not compatible with typical
usage on Twitter, e.g., currently hungry asl or that movie was funny asl.

7 ard, inna, and lls appear on multiple cities’ lists. These words are characteristic of
the neighboring cities of Baltimore, Philadelphia, and Washington D.C.

http://urbandictionary.com


Lexical words: The origins of cookout, graffiti, hella, phony, and stamp can
almost certainly be traced back to spoken language. Some of these words
(e.g., cookout and graffiti) are known to all fluent English speakers, but are
preferred in certain cities simply as a matter of topic. Other words (e.g.,
hella [12] and jawn [3]) are dialect markers that are not widely used outside
their regions of origin, even after several decades of use in spoken language.

Phonetic spellings: ain, ard, asl, inna, and yeen are non-standard spellings
that are based on phonetic variation by region, demographics, or situation.

Abbreviations: ctfuu, lls, mfs, and tfti are phrasal abbreviations. These words
are interesting because they are fundamentally textual. They are unlikely to
have come from spoken language, and are intrinsic to written social media.

Several of these words were undergoing widespread growth in popularity
around the time period spanned by our data set. For example, the frequencies
of ard, asl, hella, and tfti more than tripled between 2012 and 2013. Our main
research question is whether and how these words spread through Twitter. For
example, lexical words are mainly transmitted through speech. We would expect
their spread to be only weakly correlated with the Twitter social network. In
contrast, abbreviations are fundamentally textual in nature, so we would expect
their spread to correlate much more closely with the Twitter social network.

2.2 Social network

To focus on communication between peers, we constructed a social network of
mutual replies between Twitter users. Specifically, we created a graph in which
there is a node for each user in the data set. We then placed an undirected edge
between a pair of users if each replied to the other by beginning a message with
their username. Our decision to use the reply network (rather than the follower
network) was a pragmatic choice: the follower network is not widely available.
However, the reply network is also well supported by previous research. For
example, Huberman et al. argue that Twitter’s mention network is more socially
meaningful than its follower network: although users may follow thousands of
accounts, they interact with a much more limited set of users [28], bounded by
a constant known as Dunbar’s number [15]. Finally, we restricted our focus to
mutual replies because there are a large number of unrequited replies directed
at celebrities. These replies do not indicate a meaningful social connection.

We compared our mutual-reply network with two one-directional “in” and
“out” networks, in which all public replies are represented by directed edges.
The degree distributions of these networks are depicted in Figure 1. As expected,
there are a few celebrities with very high in-degrees, and a maximum in-degree
of 20, 345. In contrast, the maximum degree in our mutual-reply network is 248.

2.3 Geography

In order to test whether geographically local social ties are a significant conduit
of linguistic influence, we obtained geolocation metadata from Twitter’s location
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Fig. 1. Degree distributions for our mutual-reply network and “in” and “out” networks.

field. This field is populated via a combination of self reports and GPS tagging.
We aggregated metadata across each user’s messages, so that each user was ge-
olocated to the city from which they most commonly post messages. Overall, our
data set contains 4.35 million geolocated users, of which 589,562 were geolocated
to one of the eight cities listed in § 2.1. We also included the remaining users in
our data set, but were not able to account for their geographical location.

Researchers have previously shown that social network connections in online
social media tend to be geographically assortative [7,46]. Our data set is consis-
tent with this finding: for 94.8% of mutual-reply dyads in which both users were
geolocated to one of the eight cities listed in § 2.1, they were both geolocated
to the same city. This assortativity motivates our decision to estimate separate
influence parameters for local and non-local social connections (see § 5.1).

3 Language Change as Social Influence

Our main research goal is to test whether and how geographically distinctive
linguistic markers spread through Twitter. With this goal in mind, our first
question is whether the adoption of these markers can be viewed as a form of
complex contagion. To answer this question, we computed the fraction of
users who used one of the words listed in § 2.1 after being exposed to that word
by one of their social network connections. Formally, we say that user i exposed
user j to word w at time t if and only if the following conditions hold: i used w
at time t; j had not used w before time t; the social network connection i ↔ j
was formed before time t. We define the infection risk for word w to be the
number of users who use word w after being exposed divided by the total number
of users who were exposed. To consider the possibility that multiple exposures
have a greater impact on the infection risk, we computed the infection risk after
exposures across one, two, and three or more distinct social network connections.

The words’ infection risks cannot be interpreted directly because relational
autocorrelation can also be explained by homophily and external confounds. For
example, geographically distinctive non-standard language is more likely to be
used by young people [44], and online social network connections are assortative
by age [2]. Thus, a high infection risk can also be explained by the confound of
age. We therefore used the shuffle test proposed by Anagnostopoulos et al. [4],
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Fig. 2. Relative infection risks for words in each of the three linguistic classes defined in
§ 2.1. The figure depicts 95% confidence intervals, computed using the shuffle test [4].

which compares the observed infection risks to infection risks under the null hy-
pothesis that event timestamps are independent. The null hypothesis infection
risks are computed by randomly permuting the order of word usage events. If
the observed infection risks are substantially higher than the infection risks com-
puted using the permuted data, then this is compatible with social influence.8

Figure 2 depicts the ratios between the words’ observed infection risks and the
words’ infection risks under the null hypothesis, after exposures across one, two,
and three or more distinct connections. We computed 95% confidence intervals
across the words and across the permutations used in the shuffle test. For all
three linguistic classes defined in § 2.1, the risk ratio for even a single exposure
is significantly greater than one, suggesting the existence of social influence. The
risk ratio for a single exposure is nearly identical across the three classes. For
phonetic spellings and abbreviations, the risk ratio grows with the number of
exposures. This pattern suggests that words in these classes exhibit complex
contagion—i.e., multiple exposures increase the likelihood of adoption [13].
In contrast, the risk ratio for lexical words remains the same as the number of
exposures increases, suggesting that these words spread by simple contagion.

Complex contagion has been linked to a range of behaviors, from partici-
pation in collective political action to adoption of avant garde fashion [13]. A
common theme among these behaviors is that they are not cost-free, particu-
larly if the behavior is not legitimated by widespread adoption. In the case of
linguistic markers intrinsic to social media, such as phonetic spellings and abbre-
viations, adopters risk negative social evaluations of their linguistic competency,
as well as their cultural authenticity [47]. In contrast, lexical words are already
well known from spoken language and are thus less socially risky. This difference
may explain why we do not observe complex contagion for lexical words.

8 The shuffle test assumes that the likelihood of two users forming a social network
connection does not change over time. Researchers have proposed a test [32] that
removes this assumption; we will scale this test to our data set in future work.



4 Social Evaluation of Language Variation

In the previous section, we showed that geographically distinctive linguistic
markers spread through Twitter, with evidence of complex contagion for pho-
netic spellings and abbreviations. But, does each social network connection con-
tribute equally? Our second question is therefore whether (1) strong ties and (2)
geographically local ties exert greater linguistic influence than other ties. If so,
users must socially evaluate the information they receive from these connections,
and judge it to be meaningful to their linguistic self-presentation. In this section,
we outline two hypotheses regarding their relationships to linguistic influence.

4.1 Tie Strength

Social networks are often characterized in terms of strong and weak ties [22,40],
with strong ties representing more important social relationships. Strong ties
are often densely embedded, meaning that the nodes in question share many
mutual friends; in contrast, weak ties often bridge disconnected communities.
Bakshy et al. investigated the role of weak ties in information diffusion, through
resharing of URLs on Facebook [8]. They found that URLs shared across strong
ties are more likely to be reshared. However, they also found that weak ties
play an important role, because users tend to have more weak ties than strong
ties, and because weak ties are more likely to be a source of new information.
In some respects, language change is similar to traditional information diffusion
scenarios, such as resharing of URLs. But, in contrast, language connects with
personal identity on a much deeper level than a typical URL. As a result, strong,
deeply embedded ties may play a greater role in enforcing community norms.

We quantify tie strength in terms of embeddedness. Specifically, we use the
normalized mutual friends metric introduced by Adamic and Adar [1]:

si,j =
∑

k∈Γ (i)∩Γ (j)

1

log (#|Γ (k)|)
, (1)

where, in our setting, Γ (i) is the set of users connected to i in the Twitter
mutual-reply network and #|Γ (i)| is the size of this set. This metric rewards
dyads for having many mutual friends, but counts mutual friends more if their
degrees are low—a high-degree mutual friend is less informative than one with
a lower-degree. Given this definition, we can form the following hypothesis:

H1 The linguistic influence exerted across ties with a high embeddedness value
si,j will be greater than the linguistic influence exerted across other ties.

4.2 Geographic Locality

An open question in sociolinguistics is whether and how local covert pres-
tige—i.e., the positive social evaluation of non-standard dialects—affects the
adoption of new linguistic forms [49]. Speakers often explain their linguistic



choices in terms of their relationship with their local identity [16], but this may
be a post-hoc rationalization made by people whose language is affected by fac-
tors beyond their control. Indeed, some sociolinguists have cast doubt on the
role of “local games” in affecting the direction of language change [35].

The theory of covert prestige suggests that geographically local social ties
are more influential than non-local ties. We do not know of any prior attempts
to test this hypothesis quantitatively. Although researchers have shown that
local linguistic forms are more likely to be used in messages that address geo-
graphically local friends [43], they have not attempted to measure the impact of
exposure to these forms. This lack of prior work may be because it is difficult to
obtain relevant data, and to make reliable inferences from such data. For exam-
ple, there are several possible explanations for the observation that people often
use similar language to that of their geographical neighbors. One is exposure:
even online social ties tend to be geographically assortative [2], so most people
are likely to be exposed to local linguistic forms through local ties. Alternatively,
the causal relation may run in the reverse direction, with individuals preferring
to form social ties with people whose language matches their own. In the next
section, we describe a model that enables us to tease apart the roles of geographic
assortativity and local influence, allowing us to test the following hypothesis:

H2 The influence toward geographically distinctive linguistic markers is greater
when exerted across geographically local ties than across other ties.

We note that this hypothesis is restricted in scope to geographically distinctive
words. We do not consider the more general hypothesis that geographically local
ties are more influential for all types of language change, such as change involving
linguistic variables that are associated with gender or socioeconomic status.

5 Language Change as a Self-exciting Point Process

To test our hypotheses about social evaluation, we require a more sophisticated
modeling tool than the simple counting method described in § 3. In this section,
rather than asking whether a user was previously exposed to a word, we ask
by whom, in order to compare the impact of exposures across different types of
social network connections. We also consider temporal properties. For example,
if a user adopts a new word, should we credit this to an exposure from a weak
tie in the past hour, or to an exposure from a strong tie in the past day?

Following a probabilistic modeling approach, we treated our Twitter data
set as a set of cascades of timestamped events, with one cascade for each of the
geographically distinctive words described in § 2.1. Each event in a word’s cas-
cade corresponds to a tweet containing that word. We modeled each cascade as
a probabilistic process, and estimated the parameters of this process. By com-
paring nested models that make progressively finer distinctions between social
network connections, we were able to quantitatively test our hypotheses.

Our modeling framework is based on a Hawkes process [26]—a specializa-
tion of an inhomogeneous Poisson process—which explains a cascade of times-



tamped events in terms of influence parameters. In a temporal setting, an in-
homogeneous Poisson process says that the number of events yt1,t2 between t1
and t2 is drawn from a Poisson distribution, whose parameter is the area under
a time-varying intensity function over the interval defined by t1 and t2:

yt1,t2 ∼ Poisson (Λ(t1, t2))) (2)

where

Λ(t1, t2) =

∫ t2

t1

λ(t) dt. (3)

Since the parameter of a Poisson distribution must be non-negative, the intensity
function must be constrained to be non-negative for all possible values of t.

A Hawkes process is a self-exciting inhomogeneous Poisson process, where the
intensity function depends on previous events. If we have a cascade of N events
{tn}Nn=1, where tn is the timestamp of event n, then the intensity function is

λ(t) = µt +
∑
tn<t

ακ(t− tn), (4)

where µt is the base intensity at time t, α is an influence parameter that captures
the influence of previous events, and κ(·) is a time-decay kernel.

We can extend this framework to vector observations yt1,t2 = (y
(1)
t1,t2 , . . . , y

(M)
t1,t2)

and intensity functions λ(t) = (λ(1)(t), . . . , λ(M)(t)), where, in our setting, M
is the total number of users in our data set. If we have a cascade of N events
{(tn,mn)}Nn=1, where tn is the timestamp of event n and mn ∈ {1, . . . ,M} is
the source of event n, then the intensity function for user m′ ∈ {1, . . . ,M} is

λ(m
′)(t) = µ

(m′)
t +

∑
tn<t

αmn→m′κ(t− tn), (5)

where µ
(m′)
t is the base intensity for user m′ at time t, αmn→m′ is a pairwise

influence parameter that captures the influence of user mn on user m′, and κ(·) is
a time-decay kernel. Throughout our experiments, we used an exponential decay
kernel κ(∆t) = e−γ∆t. We set the hyperparameter γ so that κ(1 hour) = e−1.

Researchers usually estimate all M2 influence parameters of a Hawkes process
(e.g., [38,51]). However, in our setting, M > 106, so there are O(1012) influence
parameters. Estimating this many parameters is computationally and statisti-
cally intractable, given that our data set includes only O(105) events (see the
x-axis of Figure 3 for event counts for each word). Moreover, directly estimating
these parameters does not enable us to quantitatively test our hypotheses.

5.1 Parametric Hawkes Process

Instead of directly estimating all O(M2) pairwise influence parameters, we used
Li and Zha’s parametric Hawkes process [39]. This model defines each pairwise



influence parameter in terms of a linear combination of pairwise features:

αm→m′ = θ>f(m→ m′), (6)

where f(m→ m′) is a vector of features that describe the relationship between
users m and m′. Thus, we only need to estimate the feature weights θ and the
base intensities. To ensure that the intensity functions λ(1)(t), . . . , λ(M)(t) are
non-negative, we must assume that θ and the base intensities are non-negative.

We chose a set of four binary features that would enable us to test our
hypotheses about the roles of different types of social network connections:

F1 Self-activation: This feature fires when m′=m. We included this feature
to capture the scenario where using a word once makes a user more likely to
use it again, perhaps because they are adopting a non-standard style.

F2 Mutual reply: This feature fires if the dyad (m,m′) is in the Twitter
mutual-reply network described in § 2.2. We also used this feature to de-
fine the remaining two features. By doing this, we ensured that features F2,
F3, and F4 were (at least) as sparse as the mutual-reply network.

F3 Tie strength: This feature fires if the dyad (m,m′) is in in the Twitter
mutual-reply network, and the Adamic-Adar value for this dyad is especially
high. Specifically, we require that the Adamic-Adar value be in the 90th

percentile among all dyads where at least one user has used the word in
question. Thus, this feature picks out the most densely embedded ties.

F4 Local: This feature fires if the dyad (m,m′) is in the Twitter mutual-reply
network, and the users were geolocated to the same city, and that city is one
of the eight cities listed in § 2. For other dyads, this feature returns zero.
Thus, this feature picks out a subset of the geographically local ties.

In § 6, we describe how we used these features to construct a set of nested
models that enabled us to test our hypotheses. In the remainder of this section,
we provide the mathematical details of our parameter estimation method.

5.2 Objective Function

We estimated the parameters using constrained maximum likelihood. Given a
cascade of events {(tn,mn)}Nn=1, the log likelihood under our model is

L =

N∑
n=1

log λ(mn)(tn)−
M∑
m=1

∫ T

0

λ(m)(t) dt, (7)

where T is the temporal endpoint of the cascade. Substituting in the complete
definition of the per-user intensity functions from Equation 5 and Equation 6,

L =

N∑
n=1

log

µ(mn)
tn +

∑
tn′<tn

θ>f(mn′ → mn)κ(tn − tn′)

−
M∑

m′=1

∫ T

0

µ(m′)
t +

∑
tn′<t

θ>f(mn′ → m′)κ(t− tn′)

 dt. (8)



If the base intensities are constant with respect to time, then

L =

N∑
n=1

log

µ(mn) +
∑
tn′<tn

θ>f(mn′ → mn)κ(tn − tn′)

−
M∑

m′=1

(
Tµ(m′) +

N∑
n=1

θ>f(mn → m′) (1− κ(T − tn))

)
, (9)

where the second term includes a sum over all events n = {1, . . . , N} that
contibute to the final intensity λ(m

′)(T ). To ease computation, however, we can
rearrange the second term around the source m rather than the recipient m′:

L =

N∑
n=1

log

µ(mn) +
∑
tn′<tn

θ>f(mn′ → mn)κ(tn − tn′)

−
M∑
m=1

Tµ(m) +
∑

{n:mn=m}

θ>f(m→ ?) (1− κ(T − tn))

 , (10)

where we have introduced an aggregate feature vector f(m→ ?) =
∑M
m′=1 f(m→

m′). Because the sum
∑
{n:mn=m′} f(m′ → ?)κ(T − tn) does not involve either

θ or µ(1), . . . , µ(M), we can pre-compute it. Moreover, we need to do so only for
users m ∈ {1, . . . ,M} for whom there is at least one event in the cascade.

A Hawkes process defined in terms of Equation 5 has a log likelihood that
is convex in the pairwise influence parameters and the base intensities. For a
parametric Hawkes process, αm→m′ is an affine function of θ, so, by composition,
the log likelihood is convex in θ and remains convex in the base intensities.

5.3 Gradients

The first term in the log likelihood and its gradient contains a nested sum over
events, which appears to be quadratic in the number of events. However, we can
use the exponential decay of the kernel κ(·) to approximate this term by setting
a threshold τ? such that κ(tn − tn′) = 0 if tn − tn′ ≥ τ?. For example, if we set
τ? = 24 hours, then we approximate κ(τ?) = 3×10−11 ≈ 0. This approximation
makes the cost of computing the first term linear in the number of events.

The second term is linear in the number of social network connections and lin-
ear in the number of events. Again, we can use the exponential decay of the kernel
κ(·) to approximate κ(T − tn) ≈ 0 for T − tn ≥ τ?, where τ? = 24 hours. This
approximation means that we only need to consider a small number of tweets
near temporal endpoint of the cascade. For each user, we also pre-computed∑
{n:mn=m′} f(m′ → ?)κ(T − tn). Finally, both terms in the log likelihood and

its gradient can also be trivially parallelized over users m = {1, . . . ,M}.
For a Hawkes process defined in terms of Equation 5, Ogata showed that

additional speedups can be obtained by recursively pre-computing a set of ag-
gregate messages for each dyad (m,m′). Each message represents the events from



user m that may influence user m′ at the time t
(m′)
i of their ith event [42]:

R
(i)
m→m′

=

κ(t
(m′)
i − t(m

′)
i−1 )R

(i−1)
m→m′ +

∑
t
(m′)
i−1 ≤t

(m)
j ≤t(m

′)
i

κ(t
(m′)
i − t(m)

j ) m 6= m′

κ(t
(m′)
i − t(m

′)
i−1 )× (1 +R

(i−1)
m→m′) m = m′.

These aggregate messages do not involve the feature weights θ or the base inten-
sities, so they can be pre-computed and reused throughout parameter estimation.

For a parametric Hawkes process, it is not necessary to compute a set of
aggregate messages for each dyad. It is sufficient to compute a set of aggregate
messages for each possible configuration of the features. In our setting, there are
only four binary features, and some combinations of features are impossible.

Because the words described in § 2.1 are relatively rare, most of the users in
our data set never used them. However, it is important to include these users
in the model. Because they did not adopt these words, despite being exposed to
them by users who did, their presence exerts a negative gradient on the feature
weights. Moreover, such users impose a minimal cost on parameter estimation
because they need to be considered only when pre-computing feature counts.

5.4 Coordinate Ascent

We optimized the log likelihood with respect to the feature weights θ and the
base intensities. Because the log likelihood decomposes over users, each base in-
tensity µ(m) is coupled with only the feature weights and not with the other base
intensities. Jointly estimating all parameters is inefficient because it does not ex-
ploit this structure. We therefore used a coordinate ascent procedure, alternating
between updating θ and the base intensities. As explained in § 5.1, both θ and the
base intensities must be non-negative to ensure that intensity functions are also
non-negative. At each stage of the coordinate ascent, we performed constrained
optimization using the active set method of MATLAB’s fmincon function.

6 Results

We used a separate set of parametric Hawkes process models for each of the
geographically distinctive linguistic markers described in § 2.1. Specifically, for
each word, we constructed a set of nested models by first creating a baseline
model using features F1 (self-activation) and F2 (mutual reply) and then adding
in each of the experimental features—i.e., F3 (tie strength) and F4 (local).

We tested hypothesis H1 (strong ties are more influential) by comparing the
goodness of fit for feature set F1+F2+F3 to that of feature set F1+F2. Similarly,
we tested H2 (geographically local ties are more influential) by comparing the
goodness of fit for feature set F1+F2+F4 to that of feature set F1+F2.
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Fig. 3. Improvement in goodness of fit from adding in features F3 (tie strength) and
F4 (local). The dotted line corresponds to the threshold for statistical significance at
p < 0.05 using a likelihood ratio test with the Benjamini-Hochberg correction.

In Figure 3, we show the improvement in goodness of fit from adding in
features F3 and F4.9 Under the null hypothesis, the log of the likelihood ratio
follows a χ2 distribution with one degree of freedom, because the models differ by
one parameter. Because we performed thirty-two hypothesis tests (sixteen words,
two features), we needed to adjust the significance thresholds to correct for
multiple comparisons. We did this using the Benjamini-Hochberg procedure [10].

Features F3 and F4 did not improve the goodness of fit for less frequent words,
such as ain, graffiti, and yeen, which occur fewer than 104 times. Below this count
threshold, there is not enough data to statistically distinguish between different
types of social network connections. However, above this count threshold, adding
in F3 (tie strength) yielded a statistically significant increase in goodness of fit
for ard, asl, cookout, hella, jawn, mfs, and tfti. This finding provides evidence
in favor of hypothesis H1—that the linguistic influence exerted across densely
embedded ties is greater than the linguistic influence exerted across other ties.

In contrast, adding in F4 (local) only improved goodness of fit for three words:
asl, jawn, and lls. We therefore conclude that support for hypothesis H2—that
the linguistic influence exerted across geographically local ties is greater than
the linguistic influence across than across other ties—is limited at best.

In § 3 we found that phonetic spellings and abbreviations exhibit complex
contagion, while lexical words do not. Here, however, we found no such system-
atic differences between the three linguistic classes. Although we hypothesize
that lexical words propagate mainly outside of social media, we nonetheless see
that when these words do propagate across Twitter, their adoption is modulated
by tie strength, as is the case for phonetic spellings and abbreviations.

9 We also compared the full feature set—i.e., F1+F2+F3+F4—to feature set
F1+F2+F3 and feature set F1+F2+F4. The results were almost identical, indicating
that F3 (tie strength) and F4 (local) provide complementary information.



7 Discussion

Our results in § 3 demonstrate that language change in social media can be
viewed as a form of information diffusion across a social network. Moreover, this
diffusion is modulated by a number of sociolinguistic factors. For non-lexical
words, such as phonetic spellings and abbreviations, we find evidence of com-
plex contagion: the likelihood of their adoption increases with the number of
exposures. For both lexical and non-lexical words, we find evidence that the
linguistic influence exerted across densely embedded ties is greater than the lin-
guistic influence exerted across other ties. In contrast, we find no evidence to
support the hypothesis that geographically local ties are more influential.

Overall, these findings indicate that language change is not merely a pro-
cess of random diffusion over an undifferentiated social network, as proposed
in many simulation studies [21,24,41]. Rather, some social network connections
matter more than others, and social judgments have a role to play in modulat-
ing language change. In turn, this conclusion provides large-scale quantitative
support for earlier findings from ethnographic studies. A logical next step would
be to use these insights to design more accurate simulation models, which could
be used to reveal long-term implications for language variation and change.

Extending our study beyond North America is a task for future work. Social
networks vary dramatically across cultures, with traditional societies tending to-
ward networks with fewer but stronger ties [40]. The social properties of language
variation in these societies may differ as well. Another important direction for
future work is to determine the impact of exogenous events, such as the appear-
ance of new linguistic forms in mass media. Exogeneous events pose potential
problems for estimating both infection risks and social influence. However, it
may be possible to account for these events by incorporating additional data
sources, such as search trends. Finally, we plan to use our framework to study
the spread of terminology and ideas through networks of scientific research arti-
cles. Here too, authors may make socially motivated decisions to adopt specific
terms and ideas [37]. The principles behind these decisions might therefore be
revealed by an analysis of linguistic events propagating over a social network.
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